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ABSTRACT
Summary. Differential Evolution Entirely Parallel (DEEP) package is a software for
finding unknown real and integer parameters in dynamical models of biological
processes by minimizing one or even several objective functions that measure the
deviation of model solution from data. Numerical solutions provided by the most
efficient global optimization methods are often problem-specific and cannot be easily
adapted to other tasks. In contrast, DEEP allows a user to describe both mathematical
model and objective function in any programming language, such as R, Octave or
Python and others. Being implemented in C, DEEP demonstrates as good performance
as the top three methods from CEC-2014 (Competition on evolutionary computation)
benchmark and was successfully applied to several biological problems.
Availability. DEEP method is an open source and free software distributed under
the terms of GPL licence version 3. The sources are available at http://deepmethod.
sourceforge.net/ and binary packages for Fedora GNU/Linux are provided for RPM
package manager at https://build.opensuse.org/project/repositories/home:mackoel:
compbio.

Subjects Computational Biology, Distributed and Parallel Computing, Optimization Theory and
Computation
Keywords Differential Evolution, Parameter optimization, Mathematical modeling,
Parallelization, Bioinformatics, Open source software

INTRODUCTION
The estimation of dynamical model parameters minimizing the discrepancy between
model solution and the set of observed data is among the most important, widely studied
problems in applied mathematics, and is known as an inverse problem of mathematical
modeling (Mendes & Kell, 1998; Moles, Mendes & Banga, 2003). Numerical strategies for
solutions of an inverse problems often involve optimization methods. Many global and
local, stochastic and deterministic optimization techniques, including the nature-inspired
ones, have been developed and implemented in a wide range of free, open source and
commercial software packages.

Mathematical modeling being one of the primary tools of computational systems biology
provides new insights into the mechanisms that control the biological systems. It becomes
very attractive to experimentalists due to predictive abilities of carefully selected models, if
any.

How to cite this article Kozlov et al. (2016), A software for parameter optimization with Differential Evolution Entirely Parallel method.
PeerJ Comput. Sci. 2:e74; DOI 10.7717/peerj-cs.74

https://peerj.com
mailto:kozlov_kn@spbstu.ru
mailto:mackoel@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.74
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://deepmethod.sourceforge.net/
http://deepmethod.sourceforge.net/
https://build.opensuse.org/project/repositories/home:mackoel:compbio
https://build.opensuse.org/project/repositories/home:mackoel:compbio
http://dx.doi.org/10.7717/peerj-cs.74


www.manaraa.com

Researchers benefit from the ability of a model to predict in silico the consequences of
a biological experiment, which was not used for training. The properties of the model are
determined by the structure of themathematical description and the values of the unknown
constants and control parameters that represents the coefficients of underlying biochemical
reactions. These unknowns are to be found as a best suited solution to an inverse problem
of mathematical modeling, i.e., by the fitting model output to experimental observations.
The parameter set is to be reliable, and different types of data are to be considered.
Development of reliable and easy-to-use algorithms andprograms for solution to the inverse
problem remains a challenging task due to diversity and high computational complexity of
biomedical applications, as well as the necessity to treat large sets of heterogeneous data.

In systems biology the commonly used global optimization algorithm is the parallel
Simulated Annealing (SA) (Chu, Deng & Reinitz, 1999). This method requires considerable
CPU time, but is capable to eventually find the global extremum and runs efficiently in
parallel computations. However, the wide range of methods called Genetic Algorithms
(GA) has been developed later and successfully applied to biological problems (Spirov &
Kazansky, 2002). Modern Evolutionary algorithms such as Evolution Strategies (ESs) or
Differential Evolution (DE) can outperform other methods in the estimation of parameters
of several biological models (Fomekong-Nanfack, Kaandorp & Blom, 2007; Fomekong-
Nanfack, 2009; Suleimenov, 2013). The general challenge in the efficient implementation of
the global optimization methods is that they depend on problem-specific assumptions and
thus are not able to be easily adapted to another problems. For example, in SA both the final
result and computational time depend on the so-called cooling schedule, the success of the
GAoptimization strongly depends on selectedmutation, recombination and selection rules,
and the evolutionary algorithms heavily rely on the algorithmic parameters which define
the model of evolution. Currently a lot of approaches exist based on metaheuristics for
parameters estimation in biology. For example, enhanced Scatter Search (Egea, Martí
& Banga, 2010), implemented in MEIGOR (Metaheuristics for systems biology and
bioinformatics global optimization) package for R statistical language was reported to
outperform the state-of-the-art methods (Egea et al., 2014). This method can provide high
quality solution for integer and real parameters, however, it is computationally expensive.

We developed DEEP, a software that implements the Differential Evolution Entirely
Parallel (DEEP) method introduced recently (Kozlov & Samsonov, 2011). The rationale
behind the design of this programme was to provide an open source software with
performance comparable to the competitive packages, as well as to allow a user to
implement both mathematical model and comparison of solution with experimental data
in any software package or programming language, such as R, Octave, Python or others.

PROBLEM STATEMENT
DEEP method was developed to solve the inverse problem of mathematical modeling. For
a given mathematical model with parameters q∈RK , where K is number of parameters,
and observable data Y we seek the vector q̂:

q̂= argminF(q,Y ) (1)
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where F is a measure of the deviation of model prediction from observable data. Additional
constraints may be imposed:

hj(q)= 0, j = 1,...,NH (2)

gm(q)≤ 0, m= 1,...,NG (3)

qLk < qk < qUk , k ∈ I ⊂{1,...,K } (4)

where NH and NG are numbers of constraints in a form of equality and inequality
respectively, and I ⊂ {1,...,K } denotes the set of indices for parameters with box
constraints. Several objective functions can be combined:

F(q,Y )=
NF
�
i=1

Fi(q,Y ) (5)

where � denotes one of the aggregation methods—summation or maximization.

DIFFERENTIAL EVOLUTION ENTIRELY PARALLEL METHOD
The main algorithm
Differential Evolution (DE) was proposed in Storn & Price (1995) as an effective stochastic
method for functionminimization. DE deals with a set (population) of randomly generated
parameter vectors (individuals). The population on each iteration is referred to as
generation, moreover, a size of population NP is fixed.

DEEP method (Kozlov & Samsonov, 2011) incorporates two enhancements found in
literature, as well as some elaborated modifications. These enhancements consist in the
‘‘trigonometric mutation’’ rule proposed in Fan & Lampinen (2003) and used to take
into account a value of the objective function for each individual at the recombination
step, and the adaptive scheme for selection of internal parameters based on the control
of the population diversity developed in Zaharie (2002). The motivation to select these
enhancements was to make algorithm more suitable for biological problems containing
big data sets and not properly defined objective function.

The key concept behind the DEEP method is the age of individual defined as a number
of generations, during which the individual survived without any change of its parameter
vector. The failure to update the parameter values indicates a convergence to a local
minimum. To avoid it we propose to substitute the number of oldest individuals 9 with
the same number of the best ones after the predefined number of iterations 2.

To enhance the method further we incorporated an optional Scatter Search step (Egea,
Martí & Banga, 2010) that is performed each 4 iteration, where 4 is a control parameter.
The specified number of best individuals 9 is used to produce NP offsprings.

To increase the reliability of the DEEP method we implemented a new selection rule,
described in detail in Kozlov et al. (2013), in which several different objective functions are
considered in order to accept or reject an offspring to new generation. This feature permits
to combine different types of experimental observations and the a priori information in
one and the same fitting procedure.
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Algorithm 1. Differential Evolution Entirely Parallel method

INITIALIZATION: The population is initialized randomly.
Iteration = 0
while Stopping criterion is not met do
Iteration = Iteration + 1
RECOMBINATION:
if The predefined number of iterations 4 passed. then
Make Scatter Search Step

else
for all individuals in population do
recombine (individual)

end for
end if
EVALUATION:
objfunc (population)
SELECTION:
for all offsprings do
select (offspring)

end for
ADAPTATION:
Update scaling and crossover parameters.
if The predefined number of iterations 2 passed. then
Substitute 9 oldest individuals with the best ones.

end if
Sort the population members by age and by quality.

end while

The operation of the method is described in the Algorithm 1 insertion. The execution
starts with Initialization block in which a set of NP parameter vectors vg ,0 of length K is
randomly assigned the values satisfying the given constraints qLk < qk < qUk , k= 1,...,K .

The main loop of the algorithm consists of Recombination, Evaluation, Selection and
Adaptation blocks that are detailed below. Calculations are terminated when the objective
function variation becomes less than a predefined value during the several consecutive
steps or the maximal number of generations Gmax is exceeded. Objective function F for
several vectors is calculated in parallel.

The size of population NP , the frequencies2 and 4 for old population members
substitution and scatter search step together with the number9 of substituted individuals
and maximal number of iterations Gmax are the main control parameters of the method.

Constraints handling
Using the DEEP method, one can solve both unconstrained and constrained optimization
problems. Upper and lower bounds are to be defined for each parameter for initialization.
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Constraints may be imposed in the form of inequalities or equalities for a subset of
parameters or their combinations. Constraints in form (2), (3) can be reduced by
maximization or summation:

H (q,Y )=
NH
�
j=1

Hj(q,Y ); G(q,Y )=
NG
�
m=1

Gm(q,Y ),

where Hj and Gm is the violation of the corresponding constraint hj or gm and� denotes
one of the aggregation methods—summation or maximization.

F(q,Y )= F(q,Y )+H (q,Y )+G(q,Y ).

However, the box constraints in the form (4), that may be imposed for a subset I of pa-
rameters qgk , k ∈ I are to be transformed. To do it let us introduce the new parameters uk :

qk =αk+βksin(uk) or qk =αk+βk tanh(uk),

where

αk = (qUk +q
L
k)/2; βk = (qUk −q

L
k)/2.

Consequently, DEEP is applied to determine unconstrained parameters uk . The impact
of different algorithmic parameters on method convergence was discussed in Kozlov &
Samsonov (2011).

Recombination strategy

Algorithm 2. RECOMBINATION

proc recombine (individual) =
{
Select other two random individuals.
Build the combined trial vector using (6).
Generate the random index of parameter I .
for all parameters starting from I do
Generate the random number U .
if (U < probability of crossover) then
take this parameter from first trial vector to offspring

else if (U < 1− probability of crossover) then
take this parameter from second trial vector to offspring

else
Leave this parameter as is in offspring

end if
end for
}

The recombination step is demonstrated in the Algorithm 2 insertion. Let v i,0, i= 1,...,
NP denote a set of the randomly generated parameter vectors for the initial generation
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j = 0, v i,j = {v i,j(k)} = (qik)k=1,...,K , where K is the number of parameters q and NP is the
fixed size of the set. The first trial vector for index g is calculated by:

vg ,j+11 = va,j+S◦ (vb,j−vc,j)

where va, vb and vc are different members of the current generation j with randomly
chosen indices a, b and c , and S is a vector of scaling constants for each parameter and ◦
denotes element-wise multiplication.

The second optional trial vector is calculated using ‘‘trigonometric mutation rule’’ (Fan
& Lampinen, 2003).

vg ,j+12 =
va,j+vb,j+vc,j

3
+ (ϕb−ϕa)(va,j−vb,j)

+ (ϕc−ϕb)(vb,j−vc,j)+ (ϕa−ϕc)(vc,j−va,j)

where ϕ• = |F(v•,j)|/ϕ∗, • = a,b,c , ϕ∗ = |F(va,j)|+ |F(vb,j)|+ |F(vc,j)|, and F(x) is the
main objective function to be minimized.

The combined trial vector in case of binomial recombination type is defined as follows:

vg ,j+1(k)=


vg ,j+11 (k), if rk < pk,
vg ,j+12 (k), else if rk < 1−pk,
vg ,j(k), otherwise

(6)

where rk =U (0,1) is a random number uniformly distributed between 0 and 1, p is the
vector of crossover probabilities for all parameters. The first trial vector vg ,j+11 is used
continuously for all parameters k until the random number becomes bigger than p in case
of the exponential type of recombination.

Scatter search step
Let us consider vg ,j , g = 1,...,9 as the best members of current generation j sorted
according to the value of the objective function F such that F(v1,j) < F(v2,j) < ··· <
F(v9,j) as described in Egea, Martí & Banga (2010). Each vector vb,j is to be combined
with the rest of vectors va,j , ∀a, a ∈ [1,2,...,9], a 6= b. Two new points within the search
space are defined:

c1= vb,j−d(1+αβ); c2= vb,j+d(1−αβ); d =
va,j−vb,j

2
,

where

α=

{
1 if b< a
−1 if b> a,

β =
|a−b|−1
9−2

.

Then the offspring is created according to the formula:

vb,j+1= c1+ (c2− c1)◦ r,

where r = {rk}, rk = U (0,1), k = 1,...,K is a random number uniformly distributed
between 0 and 1.
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Selection rule

Algorithm 3. SELECTION

proc select (individual) =
{
if (F < the value of the parent) then
Accept offspring

else
for all criteria Fi, hj , gm as f do
if (f < the value of the parent) then
Generate the random number U .
if (U < control parameter for this criterion) then
Accept offspring

end if
end if

end for
end if
}

In order to increase the robustness of the procedure we have implemented the follow-
ing selection rule for DE, described in detail in Kozlov et al. (2013) (see the Algorithm 3
insertion). Briefly, several different objective functions are used to decide if an offspring
will be selected for a new generation. Firstly, the main objective function is checked. The
offspring replaces its parent if the value of this function for offspring’s set of parameters is
less than that for the parental one. In the opposite case the additional objective functions
are considered. The offspring replaces its parent if the value of any other objective
function is better, and a randomly selected value is less than the predefined parameter for
this function.

Preserving population diversity
The original DE algorithm was highly dependent on internal parameters as reported by
other authors, see, for example (Gaemperle, Mueller & Koumoutsakos, 2002). An efficient
adaptive scheme for selection of internal parameters Sk and pk based on the control of
the population diversity was proposed in Zaharie (2002). Let us consider the variation for
parameter k in the current generation:

vark =
1
NP

NP∑
i=1

(
qik−

1
NP

NP∑
l=1

qlk

)2

where k= 1,...,n. For the next generation the scaling constant is calculated by

Sk =


√
NP · (ρk−1)+pk(2−pk)

2 ·NP ·pk
NP · (ρk−1)+pk(2−pk)≥ 0

Sinf NP · (ρk−1)+pk(2−pk)< 0
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or alternatively the crossover probability is adopted as

pk =

{
−(NP ·S2k−1)+

√
(NP ·S2k−1)2−NP · (1−ρk) ρk ≥ 1

pinf ρk < 1

where Sinf = 1/
√
NP , pinf = 0, ρk = γ

(
varpreviousk /vark

)
and γ is a new constant that

controls the decrease of the variability of parameters in the course of iteration process.

Mixed integer-real problems
DE operates on floating point parameters, while many real problems contain integer
parameters, e.g., indices of some kind. Two algorithms for parameter conversion from
real to integer are implemented in DEEP method as described in Kozlov et al. (2013). The
first method rounds off a real value to the nearest integer number. The second procedure
consists of the following steps:

• The values are sorted in ascending order.
• The index of the parameter in the floating point array becomes the value of the
parameter in the integer array.

Parallelization of objective function calculation

Algorithm 4. OBJECTIVE FUNCTION

proc objfunc (population) =
{
Create a Pool of a specified number worker threads.
Create an Asynchronous Queue of tasks Q in the Pool.
for all individuals in population as x do
Push x to queue Q.

end for
Wait all worker threads in the Pool to finish.
}
procWorker Thread (parameters) =
{
1. Transform parameters from real to integer as needed.
2. Save parameters into temporary file of specified format.
3. Call specified program and supply the temporary file to it.
4. Capture output of the program.
5. Split output with specified delimiters into a list of values.
6. Assign values in the specified order to Fi, hj , gm, ∀i,j,m.
7. Return Worker Thread to Pool.
}
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DEEP can be effectively parallelized due to independent evaluation of each population
member. Various models for evolutionary algorithms parallelization have been developed,
such as master-slave, island, cellular or hybrid versions (Tasoulis et al., 2004).

The approach implemented in DEEP (see the Algorithm 4 insertion) utilizes the
multicore architecture of modern CPUs and employs the pool of worker threads with
asynchronous queue of tasks to evaluate the individual solutions in parallel. The calcu-
lation of objective function for each trial vector using the command supplied by a user
is pushed to the asynchronous queue and starts as soon as there is an available thread in
the pool. Such approach is similar to ‘‘guided’’ schedule in OpenMP but gives us more
flexibility and control. The command output is automatically recognized according to the
specified format. All threads started in the current iteration are to be finished before the
next one starts.

IMPLEMENTATION
DEEP is implemented in C programming language as console application and employs
interfaces from GLIB project (https://developer.gnome.org/glib/), e.g., Thread Pool API.
The architecture allows a user to utilize any programming language or computer system,
such as R, Octave or Python to implement both mathematical model and comparison of
solution with experimental data.

Control parameters
All the control parameters are specified in the single input file as a key-value pairs in INI-
format supplied to the DEEP executable on the command line. The control parameters
are arranged into three groups described below.

Mathematical Model section specifies the parameter number, both the lower and upper
parameter bounds, as well as the software itself necessary to run a model. A possibility is
provided to indicate parameters that are to be kept unchanged.

Objective Function section defines the aggregation methods for constraints and multiple
objectives. The type of function, i.e., main or additional objective, equality or inequality
constraint, is denoted by special keyword. Ranks and weights are to be given here.

Method Settings section allows the user to tune the settings, namely, population size,
stopping criterion, offspring generation strategy, the number of the oldest individuals to
be substituted in the next generation9, the maximal number of working threads and the
seed for random number generator. Two options for offspring generation are provided,
namely the selection of best individual or ‘‘trigonometric mutation.’’ The stopping
criterion can limit the convergence rate, absolute or relative value of the objective
function, number of generations or the wall clock time. The initial population is by
default generated randomly within the limits given; however, it is also possible to define
one initial guess and generate the individuals in the specified vicinity of it.

Programming interfaces
The DEEP method can be used as the static or dynamic shared object and embedded in
another software package. Application programming interfaces (APIs) can be used to
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connect with existing code implementing mathematical model and objective function.
This approach is often preferred in academic and industrial applications where the high
level modeling system language is not sufficient or the computation time should be
reduced.

RESULTS
Method testing on benchmark functions
To evaluate the performance of DEEP we used three simple multimodal test functions of
dimension D= 30 from the Competition on Real Parameter Single Objective Optimization
2014 (CEC-2014) test suite (Liang, Qu & Suganthan, 2014), namely:

Shifted and Rotated Griewank’s Function.

H (x)= h
(
M
(
600(x−oH )

100

))
+700; h(x)=

D∑
i=1

x2i
4000
−

D∏
i=1

cos
(
xi
√
i

)
+1

Shifted Rastrigin’s Function.

R(x)= r
(
5.12(x−or )

100

)
+800; r(x)=

D∑
i=1

(x2i −10cos(2πxi)+10)

Shifted Schwefel’s Function.

S(x)= s
(
1000(x−os)

100

)
+1000; s(x)= 418.9829×D−

D∑
i=1

g (zi(xi)),

where zi= xi+4.209687462275036x102, and

g (zi)=



zisin(|zi|1/2) if |zi|< 500,
(500−mod(zi,500))∗

∗sin
(√
|500−mod(zi,500)|

)
−

−
(zi−500)2

1000D
if zi> 500,

(mod(|zi|,500)−500)∗

∗sin
(√
|mod(zi,500)−500|

)
−

−
(zi+500)2

1000D
if zi<−500,

and the global optimum is shifted to oi= [oi1,oi2,...,oiD]T and rotated using the rotation
matrixMi.

For each function 51 runs were performed with identical settings and with random
initial population. The maximal allowed number of functional evaluations was set to
3× 105. Other DEEP settings were NP = 200, Gmax = 1,499 and9 = 40. The measured
error was the difference between the known optimal value and the obtained solution.

Following the methodology described in Tanabe & Fukunaga (2014) we used the
Wilcoxon rank-sum test with significance level p < 0.05 to compare the evaluation
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Table 1 The results of statistical comparison of DEEP with the top three methods from CEC-2014 on
3 functions. The symbols+,−,≈ indicate that DEEP performed significantly better (+), significantly
worse (−), or not significantly different (≈) compared to another algorithm using the Wilcoxon rank-
sum test (significantly, p< 0.05). All results are based on 51 runs.

DEEP vs CMLP L-SHADE UMOEAs

− (worse) 0 0 0
≈ (no sig.) 3 3 1
+ (better) 0 0 2

results for 51 runs with the results of the top three methods from CEC-2014 (Liang, Qu
& Suganthan, 2014) taken from CEC-2014 report:
1. Covariance Matrix Learning and Searching Preference (CMLP) (Chen et al., 2014),
2. Success-History Based Parameter Adaptation for Differential Evolution (L-SHADE)

(Tanabe & Fukunaga, 2014),
3. United Multi-Operator Evolutionary Algorithms (UMOEAs) (Elsayed et al., 2014).
The number of benchmark functions from three tested (+), (−), (≈) is presented in

Table 1. DEEP demonstrated the same or better performance.

The method test on reduced model of gene regulation
To demonstrate how DEEP works in applications we developed a realistic benchmark
problem based on real biological model of gap gene regulatory network (Kozlov et al.,
2015b). A model provides a dynamical description of gap gene regulatory system, using
detailed DNA-based information, as well as spatial TF concentration data at varying time
points. The gap gene regulatory network controls segment determination in the early
Drosophila embryo (Akam, 1987; Jaeger, 2011; Surkova et al., 2008).

The state variables of this model are the concentrations of mRNAs and proteins
encoded by four gap genes hb, Kr, gt, and kni. The model implements the thermodynamic
approach in the form proposed in He et al. (2010) to calculate the expression of a target
gene at the RNA level. This level is proportional to the gene activation level also called the
promoter occupancy, and is determined by concentrations of eight transcription factors
Hb, Kr, Gt, Kni, Bcd, Tll, Cad and Hkb:

Ea
i (t )=

Z a
ON ,i(t )

Z a
ON ,i(t )+Z

a
OFF ,i(t )

(7)

where Z a
ON ,i(t ) and Z a

OFF ,i(t ) are statistical weights of the enhancer with the basal
transcriptional complex bound and unbound, respectively.

Two sets of the reaction–diffusion differential equations for mRNA uai (t ) and protein
concentrations vai (t ) describe the dynamics of the system (Reinitz & Sharp, 1995; Jaeger et
al., 2004; Kozlov et al., 2012):

duai /dt =Ra
uE

a
i (t )+D

a
u(n)[(u

a
i−1−u

a
i )+ (u

a
i+1−u

a
i )]−λ

a
uu

a
i , (8)

dvai /dt =Ra
vu

a
i (t−τ

a
v )+D

a
v(n)[(v

a
i−1−v

a
i )+ (v

a
i+1−v

a
i )]−λ

a
vv

a
i , (9)

where n is the cleavage cycle number, Ra
v and Ra

u are the maximum synthesis rates, Da
v , D

a
u

(to smooth the resulting model output) are the diffusion coefficients, λav and λ
a
u are the
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decay rates for protein and mRNA of gene a. The model spans the time period of cleavage
cycles 13 and 14A (c13 and c14 resp.) and the interval of A-P axis from 35% to 92% (58
nuclei) of embryo length. The number of nuclei along the A-P axis is doubled when going
from c13 to c14. The model is fitted to data on gap protein concentrations from the FlyEx
database (Pisarev et al., 2008) and mRNA concentrations from SuperFly (Cicin-Sain
et al., 2015).

To fit the model we used the residual sum of squared differences between the model
output and data and we used the weighted Pattern Generation Potential proposed in Samee
& Sinha (2013) as the second objective function:

RSS(x,y)=
∑

∀g ,n,t :∃ygn (t )

(xgn (t )−y
g
n (t ))2 wPGP(x,y)=

1+ (penalty(x,y)− reward(x,y))
2

where g , n and t are gene, nucleus and time point respectively and

reward(x,y)=
∑

iyi ∗min(yi,xi)∑
iyi ∗yi

penalty(x,y)=
∑

i(ymax−yi)∗max(xi−yi,0)∑
i(ymax−yi)∗

∑
i(ymax−yi)

were xi and yi are respectively predicted and experimentally observed expression in
nucleus i, and ymax is the maximum level of experimentally observed expression. Conse-
quently, the combined objective function is defined by:

F(q,Y )= 2∗10−7 ∗RSS(v(q),V )+1.5∗10−7 ∗RSS(u(q),U )

+ wPGP(v(q),V )+0.6∗wPGP(u(q),U )

+ 10−8 ∗Penalty(q), (10)

where Y ={V ,U } contains data for u and v , and the function Penalty limits the growth of
regulatory parameters, and the weights were obtained experimentally.

We simplified the original computationally expensive model (Kozlov et al., 2015b) to
use it as a benchmark in our calculations as follows. Firstly, we reduced the number of
nuclei from 58 to 10 and considered only one target gene with DNA sequence from kni.
Consequently, the number of parameters was reduced to 34, two of which are of integer
type. Biologically feasible box constraints in the form (4) are imposed for 28 parameters.
Next, we fitted this reduced model to the coarsened data and used the obtained solution
and model parameters as the synthetic data for benchmark. Thus, the exact parameters of
benchmark optimization problem are known.

To compare DEEP and MEIGOR (Egea et al., 2014) we run both methods in the same
conditions and record the final value of the objective function (11), final parameters and
the number of functional evaluations. We considered those solutions for which the final
functional value is less than 0.005 that corresponds to parameters close to exact known
values. The Welch two sample t -test demonstrated that DEEP used less objective function
evaluations than MEIGOR with p< 0.005 (see Fig. 1).

Real applications
DEEP software was successfully applied to explain the dramatic decrease in gap gene
expression in early Drosophila embryo caused by a null mutation in Kr gene. Figure 2A
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Figure 1 Comparison of number of objective function evaluations for DEEP andMEIGOR on reduced
model of gene regulation.DEEP used less objective function evaluations than MEIGOR with p < 0.005
according to Welch two sample t -test.

presents the topology of regulatory network inferred by fitting the dynamical model with
44 parameters of gap gene expression to the wild type and Kr mutant data simultaneously
(Kozlov et al., 2012). Other DEEP applications include different problems described in
Ivanisenko et al. (2014); Nuriddinov et al. (2013).

Recently, DEEP was used in the online ancestry prediction tool reAdmix that can
identify the biogeographic origins of highly mixed individuals (Kozlov et al., 2015a).
reAdmix is available at http://chcb.saban-chla.usc.edu/reAdmix/.

Two applications are discussed below in details.

Subgenomic Hepatitis C virus replicon replication model
The hepatitis C virus (HCV) causes hazardous liver diseases leading frequently to cirrhosis
and hepatocellular carcinoma. No effective anti-HCV therapy is available up to date.
Design of the effective anti-HCV medicine is a challenging task due to the ability of the
hepatitis C virus to rapidly acquire drug resistance. The cells containing HCV subgenomic
replicon are widely used for experimental studies of the HCV genome replication
mechanisms and the in vitro testing of the tentative medicine. HCV NS3/4A protease is
essential for viral replication and therefore it has been one of the most attractive targets
for development of specific antiviral agents for HCV.

We used the new algorithm and software package to determine 18 parameters (kinetic
reaction constants) of the mathematical model of the subgenomic Hepatitis C virus
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Figure 2 Gene regulatory network, arrows and T-ended curves indicate activation and repressive inter-
actions respectively, dotted lines show interactions present in wild type only (A). Regulatory weights of in-
dividual transcription factor binding sites (B). Evolution of three objective functions during parameter fit-
ting (C). See text for details.

(HCV) replicon replication in Huh-7 cells in the presence of the HCV NS3 protease
inhibitor, see Ivanisenko et al. (2013).

The experimental data include kinetic curves of the viral RNA suppression at various
inhibitor concentrations of the VX-950 and BILN-2061 inhibitors (Lin et al., 2004; Lin
et al., 2006). We seek for the set of parameters that minimizes three criteria. The main
criterion (RSS) is the residual sum of squared differences between the model output and
data. Additional criteria 2 (F2) and 3 (F3) penalize the deviation of the time to steady state
and the number of viral vesicles at the steady state, respectively.

The combined criterion was defined as follows:

Fcombined=RSS+0.1 ·F2+0.1 ·F3 (11)

where the weights were obtained experimentally. The dependence of the best value of the
combined criterion (11) in population of individuals on the generation number for 10
runs is plotted in Fig. 3A. The objective function is to be evaluated once for each member
of the generation, the size of which was set to 200.

The plot of the criteria in the close vicinity of the optimal values of the two parameters
from the set is shown in Figs. 3B and 3C. Despite of the fact that the criteria do not take a
minimal values in one and the same point, the algorithm produces reliable approximation
of the optimum.

The comparison of the model output and experimental dependencies of the viral RNA
suppression rate on inhibitor concentration is shown in Figs. 3D and 3E. It is worth
to note that, the model correctly reproduces experimental kinetics of the viral RNA
suppression.

The predictive power of the model was estimated using the experimental data on
dependencies of the viral RNA suppression rate on the increasing concentration of the
SCH-503034 (Malcolm et al., 2006) and ITMN-191 (Seiwert et al., 2008) inhibitors. These
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Figure 3 (A) The combined criterion (11) vs. the generation number for 10 runs. 200 function eval-
uations were performed by the minimization procedure for each generation. (B, C) The criteria graphs
are shown in the close vicinity of the optimal values of the four parameters. The values of the parameters
found by the algorithm are denoted as x and y . (D, E) The viral RNA suppression in the presence of the
NS3 protease inhibitors in different concentrations. The dependence of the viral RNA suppression on the
increasing concentration of BILN-2061 (D) and VX-950 (E) inhibitors is shown for the third day post-
treatment. A solid line is used to show model output and points correspond to the experimental data (Lin
et al., 2004; Lin et al., 2006). (F, G) The predicted kinetics and the suppression rate of the viral RNA in
comparison with data not used for parameter estimation. The dependencies of the suppression rate of the
viral RNA on the increasing concentration of the SCH-503034 (F) and ITMN-2061 (G) inhibitors (Mal-
colm et al., 2006; Seiwert et al., 2008).

data were not used for parameter estimation. As it can be seen in Figs. 3F and 3G, the
model correctly reproduces experimental observations and thus can be used for in silico
studies.

Sequence-based model of the gap gene regulatory network
Recently, DEEP method was successfully applied to recover 68 parameters of the DNA
sequence-based model (7)–(8) of regulatory network of 4 gap genes—hb, Kr, gt, and kni—
and 8 transcription factors: Hb, Kr, Gt, Kni, Bcd, Tll, Cad and Hkb (Kozlov et al., 2015b).
The trained model provides a tool to estimate the importance of each TF binding site
for the model output (see Fig. 2B). We showed that functionally important sites are not
exclusively located in cis-regulatory elements and that sites with low regulatory weight are
important for the model output (Kozlov et al., 2014).

The evolution of the three objective functions during one optimization run is shown
in Fig. 2C. Note that the wPGP and the Penalty functions do not decline monotonically
and simultaneously. In a few first steps these functions reach their maximal values while
RSS falls sharply, that corresponds to the adaptation of the control parameters of the
algorithm and substitution of old parameter sets with good ones. Then wPGP starts to
decay, and Penalty fluctuates at high level, while RSS decays approximately at the same
rate as wPGP. As Penalty depends only on regulatory parameters, its behaviour at this
stage illustrates that it disallows the process to be trapped in some local minimum with
extreme values of parameters. During the second half of the optimization process, Penalty
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reaches its final low level and stays at it almost constant till convergence while the RSS and
wPGP exhibit a modest growth and then converge. This illustrates the ability of DEEP to
balance several objective functions. The model output at this stage is not changed much as
indicated by RSS though the absolute values of regulatory parameters are fine tuned.

CONCLUSIONS
The parallelization of objective function calculation implemented in DEEP method
considerably reduces the computational time. Several members of the current generation
are evaluated in parallel, which in our experience with Sequence-based Model of the
Gap Gene Regulatory Network, resulted in 24 times speedup on 24 core computational
node (Intel Xeon 5670, Joint Supercomputer Center of the Russian Academy of Sciences,
Moscow). The calculation of 24 objective functions in parallel threads took approximately
the same 20 s as one sequential job, and the optimization runs were able to converge in
14 h after approximately 60,000 functional evaluations.

To sum up, we elaborated both the method and the software, which demonstrated high
performance on test functions and biological problems of finding parameters in dynamic
models of biological processes by minimizing one or even several objective functions that
measure the deviation of model solution from data.
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